
Finally, in the solution (20) the physical parameters n and s must satisfy the equalities 

n + l  m n §  m 
--------, s-----0, - - - - - - ,  o ~ = 2 .  

s m - - 2  s t a ~ - 2  

NOTATION 

T, temperature; r, coordinate; ~ t, time; a, dimensional parameter; s, n, dimensionless 
parameters. 
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EFFECT OF PERIODIC SYSTEM OF NARROW INCLUSIONS ON A 

PLANE STEADY TEMPERATURE FIELD 

I. M. Abdurakhmanov and B. G. Alibekov UDC 536.24.02 

Finding the complex potential of a plane temperature field perturbed by a periodic 
system of narrow inclusions reduces to solving a singular integrodifferential equa- 
tion. The effect of cracks on an arbitrary periodic temperature field is considered. 

i. Let a plane periodic (period 2a) steady temperature field determined by the harmonic 
function To(x, y) = Re F(t) be perturbed by a 2a-periodic system of narrow macroinclusions 
of a different material or cracks. For approximate formulation of the problem and its ef- 
fective solution, we take the narrow inclusions as lines in the complex z plane. To be spe- 
cific, we assume that the thermal conductivity of the inclusions ko is considerably less than 
that of the main medium (the body) k, i.e., ko << k. 

Isolating in the z plane a band of width 2a (--a~x~a), we denote the narrow inclu- 
sions present in the band, taken in any order, by Fn, n = i, 2, ..., N. We denote the set 
of all the lines r n by F, i.e., F = F, + ... + F N. 

The problem is to find the complex potential of the periodic temperature field perturbed 
by the inclusions, W(z) = T + iV; T is the temperature and # the current function. 

We write W(z) as the sum of the potential of the temperature field of the homogeneous 
medium (without inclusions) F(z) and integrals of Cauchy type taken along the line F and all 
of the congruent lines, i.e., we write 

_ _  ~ (t) ctg ~ (t - - Z ) d t .  ( 1 . 1 )  
I V ( z ) = F ( z ) + @ ( z ) ,  ~ ( z ) =  4ai v 2a 

r 

Dagestan Branch, Academy of Sciences of the USSR. Institute of Physics, Makhachkala. 
Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 32, No. 3, pp. 512-515, March, 1977. 
Original article submitted March 30, 1976. 

This material is protected by  copyright registered in the name o f  Plenum Publishing Corporation, 227 West 1 7th Street, New York, N. Y. 
10011. No part o f  this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, 
mechanical, photocopying,  microfilming, recording or otherwise, wi thout  written permission o f  the publisher. A copy o f  this article is 
available f rom the publisher for  $ 7. 50. 

322  



The density ~(t) is determined using the boundary condition [i] 

ko (1.2) 6 .... O~ = T - - - T  +, 5 ( s ) - -  h(s) , e =  - - -  
Os s 2kh o 

Here T + and T- are the values of the temperature at the left-hand and right-hand edges of 

the inclusion; 2hoh(s) is the width of the inclusion at cross section s; and ho = const. 

Substituting Eq. (l.1) into Eq. (1.2) and using the Sokhotskii formula [2], we obtain 
a singular integrodifferential equation for 

in the form 

co (t) = T + -- T - ,  ( 1 . 3 )  

it' (s)! ~(t) _ Re t' (s) iF' (t) § 
5 (s) 

P 

Here s is an arbitrary monotonically increasing parameter such that, when s varies over the 
interval [s-, s+], the point t(s) passes over the whole of the line F. 

We assume that the limiting values of the temperature T + and T- at each end of the lines 
F n are equal and therefore it follows from Eq. (1.3) that the unknown function ~(t) must van- 
ish at the ends of F: 

(t2) = ~ (t~) = O. ( 1 . 5 )  

Here t~ and t~ denote the left-hand and right-hand ends of the line Fn, respectively. 

The boundary condition (1.5) should be used in solving Eq. (1.4). 

2. Direct solution of Eq. (1.4) may be achieved by various methods, depending on the 
form and properties of the inclusions. For example, if the line F consists of a set of N 
segments parallel to the same straight line, Eq. (1.4) may be transformed to a system of 
Fredholm equations of the second kind. 

For brevity of exposition, we illustrate this for the case of isolated inclusions (N = 
i). For N > i, the discussion is similar. 

Suppose that in the plane z = x + iy (i = /--I) considered above there is a 2a-periodic 
system of isolated (N = I) inclusions (segments) lying along a straight line (the real axis 
ox); the inclusions are all of length 2b < 2a. The equations of these segments may be writ- 
ten in the following form: t = x + 2an,--b~x~b~ b < a, y = O; n is an integer. The line 
F may be taken, for example, as the segment --b~ x~b. 

Introducing in Eq. (1.3) the expression yx: = tan (~x/2a), where u = tan (~b/2a), we ob- 
tain an equation of Prandtl type [3]: 

1 

51 ( x j  - -  4a? , a - -  x 1 
- - 1  

61 (xl) = 6 (x), [ (xJ  = Re [ i f '  (x)l ( 2 . I )  

A s s u m i n g  t h a t  t h e  f u n c t i o n  (1 --  x ~ ) l / a / h l ( x l ) ,  w h e r e  h i ( x , )  = h ( x ) ,  h a s  a f i r s t - o r d e r  
d e r i v a t i v e  c o n t i n u o u s  on t h e  s e g m e n t  [--1,  1 ] ,  and  u s i n g  t h e  m e t h o d  o f  [ 3 ] ,  Eq.  ( 2 . 1 )  g i v e s  
a r e g u l a r  e q u a t i o n  f o r  t h e  unknown f u n c t i o n  ~ ( x , ) :  

l 

(xl) C1 sin 0 (xl) ~ C~ cos 0 (X1) 28 = ' - -  - -  ~ (~) K (~, x 1) do + g (xl), ( 2 . 2 )  

- - 1  

X1 
K (~, xl) - 2av I cos [0 (i) - -  0 (xl)] P (~) - -  o (e) d~, 

0 

( 2 . 3 )  

, x1 

i d~ (2 .4 )  1 1--x~ " 0 ( X l ) =  2e ( l + ? 2 ~ 2 )  h l ( e )  ' 
0 (X1) = (1 " ?~x~) h I (x1)' 
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Fig. i. Variation in dimen- 
sionless temperature drop 
along cracks for various 
values of b/a. 

x t i X 1 

0 - - 1  0 

[_(el) , sin [0 (o) - -  0 (Xl) j d6. (2 .5 )  
I + ~2~  

The arbitrary constants C, and C2 in Eq. (2.2) are determined from the boundary conditions 
~(-+i) = O. 

In each particular case, Eq. (2.2) is solved by any of the known methods, for example, 
by the method of successive approximations. 

If the inclusions are nonconducting (ko = O) or are in the form of very elongated ovals, 
i.e., ho < i, and 

h (x) = [ 1 - -7 -  2 tg~-(.nx/2a)]l/2 cos 2 (z~x/2a), (2 .6)  

then c = 0 or, correspondingly, the kernel K(~, x,) -- 0. Hence in these two cases the inte- 
gral term in Eq. (2.2) vanishes and ~(x,) is expressed, finally, in quadratures, using the 
relation 

o~ (xl) = C 1 sin 0 (x 0 + C 2 cos 0 (x 0 + g (Xl). (2 .7)  

Determining ~(xx) in accordance with Eq. (2.2), and then passing to the variable x and 
using Eq. (1.1), we find #(z). 

Remark. In the case of a system of N inclusions parallel to the real axis ox in the 
band ~ ,  a discussion analogous to that above gives a system of N regular equations 
equivalent to Eq. (2.1). 

3. As an illustration, consider the effect of a 2a-periodic system of cracks (ko = 0, 
e = 0) lying along a straight line, the real axis x (t = x + 2an, Ixl <~_b < a; n is an in- 
teger), on a temperature field given by the complex potential 

F (z) ----- qexp ( - - i~z)s in(az /a);  q, ~ - - c o n s t .  (3 .1 )  

S u b s t i t u t i n g  Eq. (3 .1 )  i n t o  Eqs. ( 2 . 2 ) - ( 2 . 7 )  g i v e s  
2qsinc, [ (  1 ) ] f l + , O ' , , V l - - x ~  , 

-7  ~ o (x) - g ~  1 V ~ In V 1 + 7 2 @ v ] / 1  - x[ 

2 ? v  1 - x ~  ] 1 ~x ~b 
+ ]Z?2x,2 j ,  x l = - - t g  . v = t g - -  (3 .2 )  

�9 3' 2a 2a 
For the function ~(z), Eqs. (i.i) and (3.2) give 
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@(z) ----- V - ~  V ]  ---y2 1 arctgyz--arctg ~ ] T ~ -  / -v" 

V 1 +. v" ~ -  V f i  - 1 ] 1 =~ 
- - v  1 ?2z~ j ,  z~= t g - - .  (3.3) 

V 2a 

In Fig. I, the variation in the temperature drop T + -- T- (referred to q) along the cracks 
is shown for a = ~/2 and b/~ = 0.25 (i), 0.5 (2), 0.75 (3), 0.9 (4) for 0~ x/b ~i. 

NOTATION 

T +, T-, values of temperature T at the left-hand and right-hand edges of the inclusions; 
4, current function; W, complex potential of temperature field; ko, thermal conductivity of 
inclusions; k, thermal conductivity of body; Fn, smooth line in complex z plane; F, piece- 
wise-continuous line (F = r~ + ... + FN) ; 2hoh(s), width of inclusion in section s (ho = 
const); 2b, length of inclusion; 2a, period of complex potential W. 

lo 
2. 

. 
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SOLVING A SET OF DIFFERENTIAL EQUATIONS OF HEAT AND 

ELECTRICAL TRANSFER 

I. A. Zhvaniya, M. Z. Maksimov, 
and G. A. Tkhor 

UDC 536.2.023 

Methods are proposed in this article for solving the first boundary-value problem 
for a system of nonlinear differential equations for heat and electrical transfer 
in the general one-dimensional case. 

i. It is known that the transfer of heat and charge in the media which possess thermo- 
electrical properties is governed by the equations of Maxwell, of heat conduction, and by 
the generalized Ohm's law. In the stationary case these equations can be written in the form 
[1, 2] 

div (• + JE --  J 7  (aT) = O, 

j : _ _ l  ( E - - a T T ) ,  d i v J = O ;  ( t )  
P 

the solution of the equations under appropriate boundary conditions determines completely the 
fundamental characteristics of a thermoelement -- the power generated W and the heat-flux den- 
sity q: 

W = - - I J E d v ,  q ~ - - •  (2) 

where T is temperature; E is the electric field intensity; ~(T) is the coefficient of ther- 
mo-emf; ~(T) is the coefficient of thermal conductivity; and p(T) is the coefficient of re- 
sistivity. 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 32, No. 3, pp. 516-523, March, 
1977. Original article submitted July 23, 1975. 
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